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Abstract This paper deals with the cable routing problem found in electrical pan-
els, aimed on cost minimization. A heuristic solution, using an insertion algorithm
and a modified version of the Dijkstra’s algorithm, is proposed and analyzed. Tests
have shown that good results can be obtained from common layouts.
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1. Introduction

In large industrial facilities, like hydroelectric power plants, automobile manufacturers,
and other facilities equipped with medium or large-sized industrial automation systems,
there are panels and cabinets using dozens or hundreds of electrical components wired by
thousands of cables, passing through hundreds of conduits arranged as a graph. The ar-
rangement of these cables has direct influence over the cost of the panel and in the design
quality. The right definition of the routes used by the cables also allows the definition of
the quantity and type of the cables used in the panel during the design time.

The problem of giving a path for each cable in the panel, connecting all the asso-
ciated components at a minimum cost and without overfilling the space available in the
conduits, will be called here the cable routing problem. This is a real NP-complete prob-
lem from the industry, with a large scope, since many other subproblems are embedded
in it.

The routing may be made by hand: empirically or aided by measure systems (a
ruler on a scaled drawing or a measurement tool in a CAD application), the designer
selects the shortest path for every cable, starting from the most expensive and following
to the cheaper ones. If the shortest route between two components becomes overfilled, the
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designer re-routes the cable through the shortest underfilled route available. If a feasible
route cannot be found, the designer moves the already routed cables to another path. This
process follows iteratively until all cables are routed.

This is a stressing, repetitive, and error-prone process. This paper analyzes the prop-
erties of cable laying in electrical panels and suggests computer methods for optimization
of routes, aiming to minimize the global cable cost of the system.

2. Modeling

A panel is composed of an arbitrary number of components (contactors, overload re-
lays, fuses, PLCs, etc.), each one with an arbitrary number of connection terminals, in a
given physical position, and a set of conduits for wire disposition. Therefore, the model
of a panel shows the connection terminals, the conduits and associations among them.
Mathematically, the panel, Pn can be represented by

Pn := (Lt, Lc, Li) , (1)

where Lt denotes the list of connection terminals, Lc denotes the list of conduits, and Li

denotes the list of connections. The designer gives the physical position of the compo-
nents and terminals, according to design standards, and the routing process is not allowed
to change it. The layout of a simplified panel is shown in the Figure 1.

Figure 1. A common panel

A connection In among components on the same panel or components of several
distinct panels is represented by

In := (Lt, ei, se, cn) , (2)

where Lt denotes the list of connected terminals, ei represents the electrical properties
of the cable used for this connection (gauge, color, insulation voltage, maximum allowed
temperature, etc.), se is the external cross-section of the cable, and cn denotes the cost of
the cable. The values of ei are important regarding the electrical design, but are not used
in the routing process.

Each connection gives origin to one or more cables, needed to electrically connect
the terminals. A cable w is represented by



wn := (ti, tf , ei, se, c) , (3)

where ti and tf denote the starting and ending terminals, respectively, ei represents the
electrical properties of the cable, se its external cross-section, and cn its cost.

Each cable from the same connection wires two terminals, and no terminal may be
connected to more than two cables4. Therefore, qterm − 1 cables are needed to connect
qterm terminals.

The connection order of the terminals from a connection list is particularly important
because it allows some minimization on the distance traveled by the cables. From the
combinatorial analysis, it can be shown that there are qterm! permutations for the list of
terminals and that half of these permutations are inversions of those already enumerated
ones. Permutations with inverted connection order of the terminals are not electrically
distinct. Therefore, there are qterm!/2 ways to sort the terminals of each connection.
This also means that the number of available sequences increases exponentially with the
number of connected terminals.

Figure 2. Connection among three terminals of three distinct components

A terminal is represented by

Tn := (nc, nt, Pxyz) , (4)

where nc is the component tag, nt is the identification of the connected terminal and Pxyz

denotes the three-dimensional point with coordinates (x, y, z) of the terminal within the
panel space.

Conduits are line segments representing wire ducts, raceways and other materials
used to hold cables in electrical panels. A conduit is represented by

Cn := (sc, Axyz, Bxyz, t) , (5)

where sc denotes the cross-sectional area available for the cables, including safety mar-
gins, Axyz and Bxyz denote the starting and ending points, respectively, of the conduit
in the panel space and t specifies the conduit type. For modeling, there are two types of
conduits: (i) open conduits, that allows the crossing of cables through its walls, when this
is admissible by design, and (ii) closed conduits that does not allow crossing. The Figure
3 shows conduits of both types, respectively denoted by dashed and full lines. The length
of a conduit is given by the Euclidean distance between the points Axyz and Bxyz .

The first and the last jump of each cable may pass through the walls of a open conduit
if there is no ending near to it. The points where the cable crosses the conduit wall are
called entry points, (points P1 and P2 in Figure 3). These jumps must be considered in

4This is valid for terminals connected in a daisy chain. In other configurations, like those in distribution bars,
more than two cables may exist.



the cable length calculation. The entry points can be determined by solving the following
problem: given a line segment AB representing the conduit and a point C representing
the terminal, find the entry point D over AB for that the length of the line segment CD
is minimal. This step is executed for each conduit, so, it will find the nearest entry point
to the terminal.

The conduit set may be represented as a weighted graph with edges connecting
nodes attributed arbitrarily, preserving the topology of the panel, as shown in the Figure
3. Conduits have a limited available internal space, so the amount of cables transiting
through an edge is limited by the sum of their cross section areas. A conduit is called
overfilled if it cannot hold more cables due to this limitation.

Figure 3. Conduit graph of the panel from Figure 1 and routed cable

A route is, by definition, a sequence of nodes and terminals that gives the path fol-
lowed by a cable from the starting terminal to and the ending terminal td, i. e.,

rn := [to, n1, n2, . . . , nn, td] , (6)

where n are the nodes traveled by the cable. If the cable passes through open conduits,
these points must be listed too.

The length len(rn) of a route rn is given by the sum of the lengths of the conduits
traveled by the cable, including any entry point, i.e.,

len(rn) :=
i=m−1∑

i=1

dist(ni, ni+1) (7)

where dist(ni, ni+1) is the Euclidean distance between a ni and ni+1.
Formally, the cable routing problem is the problem of finding a set of cables Lw =

{w1, . . . , wm} and a set of routes Lr, for each connection in from the list of connections,
so that the function

ctotal :=
j=n∑

j=1

cunit(ij)×
k=m∑

k=1

len(R(wk)) (8)

is globally minimal. Here cunit(ij) is the cost per unit of length of the cable used for the
connection ij , and R(w) is the function that links a cable w to a route from the set of all
possible routes.



Given the set of conduits Lc of the panel and a set of cables Lw passing through a
conduit c ∈ Lc, the function R(w) must satisfy the constraint

∑
sect(w) ≤ sc∀w ∈ Lw, c ∈ Lc , (9)

where sect(w) is the external cross section area of the cable w and sc the cross section
area available in the conduit c.

3. Simplification

The model described in the section 2 allows high-quality solutions, but, its higher com-
plexity inspires the search for a simplified model that allows fast near-optimal computer
solutions. Therefore, the following simplifications may be introduced:

• Apply the routing on a defined list of cables, not on a list of connections. This
simplification cuts the computing complexity, but has the drawback of excluding
the search for better solutions by changing the terminal wiring order.

• Use only conduits of the closed type. All cables must enter and leave the con-
duits by the endings. This simplification translates the search for entry points to a
search for the nearest ending of a conduit, performed in linear time5.

Without the complexity needed to define the cable list from the connection list, a
solution to the simplified model needs only the routes attributions to each cable. A ca-
ble will follow the shortest route between two terminals unless this route precludes, by
conduit saturation, the existence of more economic routes for other cables.

The given problem has some similarity to the classical, NP-complete[1], knapsack
problem: there are a bag of limited size (the set of conduits) and a set of objects (ca-
bles), with distinct costs, that must be inserted optimally in the available space. However,
the cable routing problem has one more complexity: the cost of a cable changes as the
problem evolves since the conduits become saturated when more and more cables are
inserted.

An different approach to a similar problem, using genetic algorithms was considered
in [2].

4. The Routing Algorithm

The proposed algorithm (see Algorithm 1) routes each cable through the shortest path
available in the conduit graph, decrementing the available space according to the cross-
section area of the cable. This process is called graph shrinking.

The cost minimization comes from the pre-sorting. By inserting first the most ex-
pensive cables, the algorithm tries to avoid the saturation, giving the shortest routes to
them. The cheaper cables are routed later, getting increasingly worst routes due to con-
duit saturation.

5This search have a complexity order of O(2nc) for nc conduits. There are some further feasible optimiza-
tions, not implemented in the current proposal. For example, in a assembly of several docked panels, the con-
duits and terminals may be grouped by panel, and the search limited to the conduits of the same panel of the
terminal.



The algorithm works with permutations to satisfy the saturation of cables in a spe-
cific conduit. This process is similar to the backtracking process available in languages as
Prolog [3,4]. If, due to route saturation, a cable cannot be inserted, the current solution is
discarded, the list of cables is permuted and the process begins again. If no permutation
yields success, the problem is said to be non-feasible.

Algorithm 1 Cable routing
Given the lists of cables Lw, terminals Lt, conduits Lc, and nodes Ln;
Sort Lw, in descending order, according to the cable cost per length unit;
While no valid solution is found, do:

For each cable w ∈ Lw, do:
Find the starting and ending nodes in the graph, for that

dist(wstart, nstart) and dist(wend, nend) are minimal;
Find the set L′c containing the conduits of Lc with enough internal

space for the cable w;
Find the shortest path rw between nodes nstart and nend of L′w;
Update the available space in the conduits of Lw according to rw;
Find the route cost croute = cunit × (dist(wstart, nend) +

len(rw) + dist(wstart, nend))

Find the total cost from the current solution;
End the program if a feasible solution was found; Otherwise, permute Lw;

According to the insertion heuristics, it is expected that a solution may be found
without the need of too many permutations. A solution may be considered optimal if no
cable was was shifted from its shortest paths due to conduit saturation.

4.1. Implementation

The Algorithm 1 was implemented in the Lua programming language[5,6]. Data files
with information on the panel geometry and the wiring list are loaded by the application
using the language’s own parser, run through a validation routine, and used to build
the adjacency matrix used by the variant of Dijkstra’s Algorithm, and tables of nodes,
terminals and positions.

The Dijkstra’s Algorithm [7] is a classic algorithm for the single-source shortest
path problem for a directed graph with non-negative edge weights. The implementation
used here differs from the standard algorithm by considering only conduits with enough
space for the cables. Therefore, only the adjacency matrix is needed for a single solution,
lowering the need for processing. In order to allow the search on non-directed graphs,
like those associated to the conduits, the adjacency matrix keeps two references for each
conduit.

5. Tests and Results

A case-study was performed, comparing the solutions given by the implementation de-
scribed above and one given by a human expert. This comparison uses the project6 of

6Project number 035815E/05, October of 2005, courtesy of WEG Automação S.A.



a PLC remote panel with 57 segments of conduit and 692 wires and cables connecting
1096 distinct terminals. The Figure 4 shows the physical layout of the components. This
panel was chosen because there is a multitude of alternative routes and a high concentra-
tion of wires in the area near to the PLC, allowing to test the main characteristics of the
algorithm.

The data was generated from the wiring list originally used for the panel assembling,
and from a three-dimensional model, made with a CAD application, that gives the phys-
ical position of each terminal and conduit. All cables were routed through the panel in
the first iteration of the algorithm. Table 1 shows the amount of cables calculated and the
amounts bought, at time of panel assembly, with assistance of the human expert using his
professional knowledge, but without any formal procedure. Costs are given in Brazilian
Reais (R$, BRL in ISO 4217).

Figure 4. Panel from the case study (Source: WEG Automação S.A.)

The table 1 shows the properties of the route selection heuristic. It shows that in all
instances of shielded cable, the most expensive one, got good routes, causing a substan-
tial saving. The amount of the cheaper 0.75mm2 dark blue cable given by the algorithm
was higher than the amount given by the expert. Also, it must be noted that the expert
rounded up the amounts that could not be safely calculated (the 4.0mm2 green/yellow
cable is a extreme case). The focus of the algorithm on the cost minimization may be
inferred from the global cost decrease.

This process took a mean time of 1.34s to run in a Athlon XP 2000+ computer
running a Linux operating system and the standard Lua 5.1.1 interpreter. Further tests
made with the LuaJIT 1.1.3 just-in-time compiler ran in a mean of 0.82s in the same
machine. The running times were measured with the Unix time command and includes
the time needed to start the interpreter and load the data files.



Table 1. Cable amount comparison

Cable Manual method Heuristic method

Gauge and color (R$/m) (m) (R$) (m) (R$)

0.5mm2 two way shielded 1.69 100.00 169.00 69.34 117.18
0.75mm2 dark blue 0.26 500.00 130.00 505.71 131.48
0.75mm2 black 0.26 100.00 26.00 25.81 6.71
0.75mm2 red 0.26 90.00 23.40 34.83 9.06
1.5mm2 yellow 0.37 30.00 11.10 13.29 4.92
1.5mm2 black 0.37 100.00 37.00 87.56 32.40
1.5mm2 green/yellow 0.36 40.00 14.40 43.94 15.82
2.5mm2 black 0.58 30.00 17.40 13.20 7.66
2.5mm2 green/yellow 0.58 30.00 17.40 13.39 9.51
4.0mm2 green/yellow 0.90 20.00 18.00 1.92 1.73

Total 463.70 336.45

6. Concluding Remarks and Future Work

The proposed algorithm gave excellent results when solving the most common routing
problems, when the space available in the conduits were not tightly restricted, normally
getting a solution after few iterations. Problems with feasible solutions that cannot be
found in the initial iterations are rare in the practical projects found in the industry. The
approximation introduced by the lack of entry points did not cause considerable losses,
unless for cables wiring near terminals (jumpers).

Future work will focus on methods to generate the wiring lists from the connection
lists using Constraint Programming[8] and alternative ways to permute the wire list when
the first iteration fails. The feasibility of a solution for the complete routing model given
in the section 2 using an ant colony optimization system, similar to the system used by
[9] in communication networks, is also an interesting starting point for new research.
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